《工艺评价和研究规划》PERP系列报告–α烯烃

 《工艺评价和研究规划》( PERP )

 系列报告 –

 α

 烯烃

 介绍

 The alpha olefins business is complex.

 A full range alpha olefins plant produces, depending on technology, a range of olefins with even numbered carbons.

 As Figure 1 illustrates, alpha olefin producers serve the markets of polyolefins, synthetic lubricants, detergent intermediates, oilfield chemicals, paper industry, additives, etc.

 Each derivative market has its own characteristics in terms of demand growth, selling geography, customer base, customer fragmentation, quality requirements, off-take volumes, etc.

 Even a naphtha cracker with its multiplicity of products, ethylene, propylene, C4s, aromatics, etc, does not serve markets with such different characteristics. α 烯烃业务比较复杂。全馏程的 α 烯烃装置,依据所采用的技术,可以生产带偶数碳的烯烃。如同图 1 所示,α 烯烃生产商服务于聚烯烃、合成润滑油、洗涤剂中间体、油田化学品、造纸工业、添加剂等市场。每个衍生物市场在需求增长、销售地理学、客户基数、客户细分、质量要求、承销量等方面有其自己的特征。甚至一个生产多种产品(乙烯、丙烯、C4s、芳烃等)的石脑油裂解厂也不以这些不同的特征服务于市场。

 图 图 1 Figure 1

  Schematic View of the Alpha Olefins Business α 烯烃业务示意图 (Illustrative)

  + Click image to enlarge

 The business of managing an alpha olefins business is therefore a challenge of balancing the requirements of serving the markets while maximizing revenue across the whole spectrum of alpha olefin products. 因此经营α烯烃业务是在使所有α烯烃产品收入最大化的同时平衡服务于市场需求的一个难题。

 y Technology 技术

 Overall, the technology for alpha olefins production (greater than C2 and C3) is divided into two families: 总的说来,α 烯烃生产技术(大于 C2 和C3)分成两大类:

  Full-Range Alpha Olefins (both commercial and new/emerging processes) 全馏程的 α 烯烃(既有工业化工艺,又有新工艺)

  Single-Fraction or On-purpose Production (both commercial and new/emerging processes) 单馏分或专门化生产(既有工业化工艺,又有新工艺)

 Full- - Range Technologies

 全 馏程 技术

 Full-range technologies cover those processes based on ethylene oligomerization that produce alpha olefins from butene-1 through to C30+.

  Different technologies in commercial operation today vary in their design and provide a maximum limit on carbon number. 全馏程技术涵盖的工艺基于生产从丁烯-1 一直到 C30+的 α 烯烃的乙烯齐聚反应。今天商业运行的各种技术,其设计各不相同,对碳的数量都提供了最大的限数。

 The commercial technologies discussed in this report are: 本报告讨论的商业技术是:

  Chevron Phillips GULFTENE ®

 process Chevron Phillips GULFTENE ®工艺  Shell SHOP process

 Shell SHOP 工艺  INEOS process (originally developed by Ethyl)

 INEOS 工艺(原先由 Ethyl 开发)

  Idemitsu process

 出光工艺 世界级拥有和运行的 α 烯烃生产有三种核心技术,即 INEOS(原 BP,原 Amoco,原 Albemarle 和原 Ethyl)、Chevron Phillips(原 Chevron 和原 Gulf)和 Shell技术。使用类似然而不同技术的较小装置只有日本的三菱和出光在运行。INEOS (Albemarle)和 Chevron Phillips (Chevron)分别向西伯利亚的 Nizhnekamsk 和捷克共和国的 Spolana 给与了技术许可。Spolana 装置于 2003 年关闭。

 There are three core technologies for the production of alpha olefins which are owned and operated at worldscale, namely those of INEOS (formerly BP, formerly Amoco, formerly Albemarle and formerly Ethyl), Chevron Phillips (formerly Chevron and formerly Gulf) and Shell.

 Smaller units using different albeit similar technologies are operated by Mitsubishi and Idemitsu in Japan only.

  Both INEOS (as Albemarle) and Chevron Phillips (as Chevron) have licensed their processes to Nizhnekamsk (Siberia) and Spolana (Czech Republic) respectively.

  In 2003, the Spolana facility closed. Not only does each process operate with a different approach to catalysis and therefore distribution, but the reaction systems are quite different.

 However, once an alpha olefin stream is produced with catalyst removed, the separation train is generally similar in concept.

 The clear exception is Shell which includes metathesis in its process technology. 不仅每个工艺以不同的催化和分布方式运行,而且反应系统大不相同。然而,一旦脱出催化剂的 α 烯烃流生产出来,在概念上分离生产线大致相似。明显的例外是壳牌在其工艺技术中包括了烯烃转位。

 In recent years, the drive to develop more advanced polyethylenes using metallocene catalysts has made extra demands on comonomer alpha olefin quality.

 To fulfill these demands, additional distillation steps have been included in alpha olefin plants for upgrading the quality of hexene-1 and in some cases the quality of butene-1 by removing trace benzene, for example.

 These enhancements are referred to as “Super Six” and “Super Four” columns, respectively. 近年来,开发使用金属茂催化剂的更先进的聚乙烯的活动对共聚单体 α 烯烃质量提出了额外的要求。为了满足这些要求,α 烯烃装置中包括了额外的蒸馏步骤,提高己烯-1 的质量,在某些情况下,例如通过去除微量苯提高丁烯-1 的质量。这些提高设施分别称为“超级 6”塔和“超级 4”塔。

 Chevron P hillips Process

 s Chevron Phillips 工艺

 In the Chevron Phillips full-range process (originally developed by Gulf, which subsequently merged with Chevron), alpha olefins are synthesized from ethylene using Ziegler chemistry.

  There are two basic steps to the olefin synthesis process: chain growth and displacement. 在 Chevron Phillips 全馏程工艺(原由 Gulf 开发,后与 Chevron 合并)中,α 烯烃从利用Ziegler 化学原理的乙烯合成而来。烯烃合成工艺有两个基本的步骤:链增长和置换。

 Chevron Phillips 工艺由得克萨斯 Cedar Bayou 操作,许可给 Chemopetrol, Spolana Neratovice,该工艺使用一步法链增长和置换相结合技术。在置换时,烷基团以含偶数碳原子的直链 α 烯烃形式被裂解出来。

 The Chevron Phillips process, operated at Cedar Bayou, TX and licensed to Chemopetrol, Spolana Neratovice, uses the single-stage combined growth and displacement technique.

 During displacement, the alkyl groups are cleaved as straight-chain alpha olefins with an even number of carbon atoms.

 They are obtained in high purity because little isomerization takes place under the reaction conditions.获得的产品是高纯度的,因为在反应条件下,几乎没有什么异构化发生。

 In the Chevron Phillips process, only a catalytic amount of alkylaluminum is employed.

 Several chain-growth displacement sequences occur on each aluminum bond during each pass through the reactor.

 The alkylaluminum can be destroyed after the reaction without undue economic penalty.

 Alkali hydrolysis converts the catalyst to an aluminate, which facilitates separation and avoids production of byproducts during olefin recovery. 在 Chevron Phillips 工艺中,只使用了催化量的烷基铝。在每次通过反应器时许多链增长置换序列发生在每个铝键上。可以在反应后摧毁烷基铝而不遭到过度的经济处罚。碱性分解将催化剂转化成铝酸盐,这样在回收烯烃时便于分离,避免副产品的产生。

 A characteristic of the single step process is its broad carbon number distribution.

  A typical weight distribution will follow a reduced geometric series, increasing in molecular weight from C4.

  Raising the reaction pressure will extend the series and produce a larger C12+ segment.

 A theoretical weight distribution can be derived, assuming the only reactions are chain growth and chain displacement by ethylene.

 The theoretical product chain length distribution is governed by the single parameter, K, which is the ratio of chain growth reaction to displacement reaction under the particular reaction conditions. 一步工艺的特征是碳数量分布较广。典型的重量分布服从降低的几何级数,从碳 4 增加分子量。提高反应压力将延伸级数,产生更大的 C12+链段。可以导出理论重量分布,假定反应是只有链增长和乙烯的链置换。理论产品链长分布受单个参数 K 的支配,K 是在特定反应条件下链增长反应对置换反应的比率。

 Shell Higher Olefins Process ( SHOP)

 壳牌高级烯烃工艺 (SHOP)

 The Shell Higher Olefins Process (SHOP) employs a series of different process chemistries to circumvent the problems associated with the normal geometric distribution of ethylene oligomers: 壳牌高级烯烃工艺(SHOP)利用一系列不同的工艺化学原理解决乙烯低聚物有关的正常几何分布问题:

  Oligomerization 低聚化  Isomerization 异构化  Olefin Disproportionation (Metathesis)烯烃歧化(转位)

 This sequence of processing steps allows production of the most economical chain lengths to be maximized to suit Shell’s strategy of combining alpha olefins with synthetic detergent alcohols production.

  A simplified block flow diagram of the SHOP process is shown in Figure 2.这一序列加工步骤允许最经济链长的最大化生产,适应壳牌将 α 烯烃同合成洗涤剂用醇类生产结合起来的战略。SHOP 工艺的柱状简图见图 2。

 Figure 2 图 图 2 2

 Overview of Shell’s Higher Olefin Process 壳牌高级烯烃工艺概述 (Illustrative)

 (图示)

 + Click image to enlarge Olefin disproportionation or olefin metathesis is a key and distinguishing feature of the SHOP process.

  This unusual chemistry typically takes place over heterogeneous catalysts comprising molybdenum, tungsten, or rhenium on alumina or silica substrates.

  Homogeneous catalysts are known, but are not usually commercially employed.

  The metathesis step allows the low and high boiling range internal olefins to be disproportionated into a range of more useful molecular weight olefins.

  For example, a C4 olefin and a C24 olefin can be disproportionated into two C14 olefins.

 [A more recent example of olefin metathesis is the commercialization of olefin metathesis for propylene production from ethylene and butene-2.] 烯烃歧化或烯烃转移是SHOP 工艺主要明显的特征。这个非同寻常的化学原理典型地发生在氧化铝或二氧化硅基质上由钼、钨、铼组成的非均相催化剂中。均相催化剂已为人熟知,不过通常不商业化运用。转移解步骤使得高低沸腾范围之间烯烃歧化成一系列分子量更有用的烯烃。例如,碳 4 烯烃和碳 24 烯烃可以歧化成两个碳 14 烯烃。[烯烃转移解的近例是乙烯和丁烯-2 制取丙烯的烯烃转位工业化。]

 INEOS

 Process

 S INEOS 工艺

 The INEOS process employs both a catalytic step and a stoichiometric stage.

  The technology was originally commercialized by Ethyl and through subsequent mergers and acquisitions came under BP ownership via Albemarle and Amoco.

 At the end of 2005, INEOS acquired the Innovene assets from BP.

  By recycling alpha olefins to the chain growth section, INEOS can peak production of olefins in the carbon range desired, though this introduces a degree of branching into the alpha olefin product.

  Three basic steps are used to synthesize alpha olefins from ethylene by means of Ziegler chemistry: INEOS 工艺既使用催化剂步骤也使用化学计算步骤。该技术原先由 Ethyl 商业化,以后经过数次并购,通过Albemarle 和 Amoco 由 BP 所有。2005 年底,INEOS 从 BP 收购了 Innovene 资产。通过在链增长阶段回收利用 α 烯烃,INEOS 可以在需要的碳范围内使烯烃生产最大化,尽管这在 α 烯烃产品中引入了一定程度的支化。三个基本的步骤用来通过 Ziegler 化学原理从乙烯合成制 α 烯烃:

  Triethylaluminum (TEA) synthesis 三乙基铝(TEA)合成  Chain growth 链增长  Displacement 置换 TEA, which is the catalyst for ethylene chain growth, is prepared by reductive alkylation of aluminum powder with hydrogen and ethylene.

 Ethylene chain growth occurs catalytically via stepwise addition to each of the three alkyl groups of the TEA: TEA 是乙烯链增长的催化剂,由用氢和乙烯还原的铝粉烷基化制备。通过逐步加入到 TEA 三个烷基团,催化地发生乙烯链增长。

  + Click image to enlarge By means of controlling the rate of ethylene addition and temperature, chain growth can be somewhat regulated.

  Yielding a broad carbon number range product, this one step process is the first stage in the INEOS process.

 INEOS typically runs this process in order to yield a large proportion of low molecular weight C4-C8 olefins.

 This product range is needed for use in INEOS’ complementary second step and to meet comonomer market demand. 通过控制乙烯加成的速度和温度,可以在一定程度上调整链增长。产生宽幅碳数量产品的一步法是 INEOS 工艺的第一阶段。INEOS典型地运用这个工艺,大比例地生产低分子量碳 4 到碳 8 烯烃。这个产品范围需要用于 INEOS 补充性第二阶段,满足共聚单体市场需求。

 Unlike many areas of the petrochemical industry, LAO technology was historically not available via license.

 However, this is changing and several licensors are now offering LAO technology.

 These new full-range technologies are discussed in this report: 不同于石化工业的其它领域,LAO 技术历史上通过技术许可是得不到的。然而,这种情况在变化,不少许可方提出了转让 LAO 技术。这些新馏程技术在本报告中得到了讨论。

  Axens ALPHASELECT ®

  UOP LINEAR-1 ®

  SABIC/Linde α-SABLIN ®

 Single Fraction or On- - Purpose Technologies

 单馏分或专门化技术

 Sasol Fischer- - Tropsch Derived Hexene- - 1 and Octene- -1 1

 l Sasol 费- - 托工艺获得的己烯- -1 1 和辛烯- -1 1

 Sasol, the largest chemical producer in South Africa, began recovering pentene-1 and hexene-1 from its coal-to-synthetic fuels complex at Secunda in the early 1990s.

 While only minor quantities of pentene-1 have actually been produced, Sasol has become a major global supplier of hexene-1 and now also octene-1.

 Sasol commenced hexene-1 production in 1994 and has since expanded capacity.

 Sasol expanded its alpha olefin portfolio and brought on-stream its first octene-1 line in 1998 with a capacity of 48 thousand metric tons per year.

  Sasol’s success in penetrating the ocente-1 market, has spurred Sasol to build a second octene-1 train in 2004 of 48 thousand metric tons per year.

 南非最大的化工生产商Sasol于二十世纪九十年代早期在Secunda的煤合成油燃料联合装置开始回收戊烯-1 和己烯-1。尽管实际上只有少量的戊烯-1,但是 Sasol已经成为戊烯-1 和己烯-1 的主要的全球供应商。Sasol 于 1994 年开始己烯-1的生产并扩大产能。Sasol 扩大了 α 烯烃的产品种类并于 1998 年投产了第一条辛烯生产线,能力为 4.8 吨万/年。Sasol 渗透辛烯-1 市场的成功已经促使 Sasol于 2004 年建造第二条辛烯-1 生产线,能力为 4.8 万吨/年。

 The Secunda complex processes coal-derived synthesis gas in its Synthol reactors to yield hydrocarbon streams rich in alpha-olefins - in addition to gasoline, diesel, and other fuel products; oxygenates; and lower molecular weight olefins such as ethylene and propylene.

 The Synthol product streams contain a range of alpha-olefins of all carbon numbers (odd and even) from ethylene through decene-1.

 Availability generally decreases with increasing carbon number.

 Quantities potentially recoverable in the butene-1 to octene-1 range used as polyethylene comonomers, as depicted in Figure 3, are significant relative to quantities produced by ethylene oligomerization units. Secunda 联合装置在其 Synthol 反应器中加工煤源合成气,除了汽油、柴油、其它燃料产品,含

 氧化合物,乙烯和丙烯等低分子量烯烃外,还产生含有丰富的 α 烯烃的烃类流。Synthol 产品流包括各种碳数量(奇数和偶数)的 α 烯烃,从乙烯到癸烯-1。可获得性通常随着碳数量的增加而降低。用于聚乙烯共聚单体的丁烯-1 到辛烯-1 范围(如图 3 所示)内可能回收的数量同乙烯低聚装置生产的数量是密切相关的。

 Figure 3 图 图 3 3

 Sasol FT- - Derived Alpha Olefin Distribution

 Sasol 费- - 托法 α α 烯烃 分布 (Weight percent)

 (重量百分数)

 + Click image to enlarge Unfortunately, owing to the complex mixture of isomers and oxygenated compounds, it is not possible to isolate hexene-1 or octene-1 by simple distillation.

 This prompted Sasol to develop separation schemes involving a number of steps including etherifications, extractive distillations, and superfractionations.

  For example, Sasol’s most recent separation scheme is its octene-1 Train II as outlined below. 不幸的是,由于异构物和含氧化合物复杂的混合,不可能通过简单的蒸馏隔离己烯-1 或辛烯-1。这促使 Sasol 制定包括许多步骤的分离计划,如醚化、抽提蒸馏、超精馏。例如,Sasol 最近的分离方案是下图所示的其辛烯-1 第二生产线。

 + Click image to enlarge

 Chevron Phillips Ethylene Trimerization to Hexene- -1 1

 Chevron Phillips乙烯三 聚合制辛烯- -1 1

 Phillips, prior to its merger with Chevron (to form Chevron Phillips), developed a family of chromium-based catalysts which can selectively trimerize ethylene to hexene-1 with high selectivity. In order to achieve such high selectivity, a fundamentally different chemical pathway must be at work compared to full range technologies. 在同 Chevron 合并(组成Chevron Phillips)前,Phillips 开发了可以选择性地乙烯三聚合成辛烯的系列铬基催化剂。为了达到这种高选择性,必须使用与全硫程技术相比根本不同的化学路径。

 The key difference between this catalyst system and conventional oligomerization catalyst is the propensity of the Phillips chromium based catalyst to form metallacycles (see Figure 4).

 The first metallacycle formed is a five-membered ring structure comprising two equivalents of ethylene.

 Five-membered rings are thermodynamically relatively stable structures and remain intact long enough for another equivalent of ethylene to be inserted thus affording a seven-membered metallacycle.

 At this stage in the catalytic cycle the seven-membered ring structure decomposes via reductive elimination, in preference to forming a relatively unstable nine-membered ring, and releases one equivalent of hexene-1 and an active catalyst poised to repeat the cycle.

 The overall reaction is thus: 这种催化剂系统和传统低聚催化剂之间的主要区别是 Phillips 铬基催化剂构成金属环化物的倾向(见图 4)。构成的第一个金属环化物是由两个乙烯当量组成的五元环结构。五元环结构是热力学相对稳定的结构,可以足够长时间地保持完整,以使另一个乙烯当量插入后,构成一个七元环金属环化物。在催化周期的这一阶段,催化剂环中的七元环结构通过还原性的消除来分解,有利于形成一个相对不稳定的九元环,释放一个己烯-1 当量和一种处于活性状态的催化剂来重复这个环。因此整个反应是:

 Figure 4 图 图 4 4

 Trimerization Catalysis 三聚催化 (Illustrative)

 (图示)

  + Click image to enlarge In 2003, Chevron Phillips started up a 47,000 metric ton per year hexene-1 only plant in Qatar as part of its Q-Chem venture.

 Sinopec’s Yanshan Petrochemical has recently developed its own proprietary ethylene trimerization process and has built a 50,000 metric ton per year hexene-1 plant.

 This plant was scheduled for start-up in the second half of 2007.

 And now, Mitsui Chemical has announced the development of its own ethylene trimerization process. 2003 年,Chevron Phillips 的 4.7 万吨/年只生产辛烯-1 装置在卡塔尔开车,作为其 Q-Chem 公司的一部分。中国石化的燕山石化最近开发了专有的乙烯三聚工艺,并建设了 5 万吨/年的己烯-1 装置。该装置预计于 2007 年下半年开车。现在,三井化工宣布开发其自己的乙烯三聚合工艺。

 Emerging On- - Purpose Prs ocesses 新兴的专门化工艺

 Lummus Comonomer Production Technology (CPT)

 s Lummus 的 共聚单体生产技术 (CPT)

 Lummus has been quite successful in developing and licensing its metathesis-based Olefins Conversion Technology (OCT) for on-purpose production of propylene.

 Lummus has also been developing alternative uses for metathesis technology.

 One of these developments is termed Comonomer Production Technology (CPT).

 CPT has several options, but the main aspect assessed in this report is for on-purpose production of hexene-1.

  This process employs the so-called auto-metathesis of butene-1 to give hexene-3.

 The hexene-3 is isomerized to finally give hexene-1.

 The idealized chemical reactions are shown. Lummus 在开发和许可其专门化生产丙烯的烯烃转位转化技术(OCT)方面相当成功。Lummus 也一直在开发转位技术的其他使用。其中一种开发叫做共聚单体生产技术(CPT)。CPT有几种选择,但是本报告评估的主要方面是己烯-1 的专门化生产。这种工艺运用所谓的丁烯-1 自动转位,产生己烯-3。己烯-3 异构化,最终产生己烯-1。理想的化学反应见下图。

  + Click image to enlarge A challenge to this approach is that both the metathesis and isomerization reactions are equilibrium controlled and can lead to side products and extensive recycle loops. 这个方法的一个难题是转位和异构化反应都是受限制的平衡,可能造成副产品和广泛的再循环圈。

 Figure 5 provides a simplified block flow diagram of the Lummus CPT process. 图 5 是 Lummus CPT 工艺流程简化方块简图。

 Figure 5 图 图 5 5

 Simplified Block Diagram of Lummus CPT Process for

  Hexene- - 1 Production

  s Lummus 己烯-1 生产 T CPT 工 艺 流程 简化方块 简图

 + Click image to enlarge Dow was scheduled to start-up a 50,000 metric ton per year octene-1 plant in Terragana, Spain using this butadiene based approach in 2007. 陶氏在西班牙 Terragana 的 5 万吨/年辛烯-1 装置预定在 2007 年开车,该装置利用了这种以丁二烯为原料的方法。

 Dow Butadiene- - Based Octene- - 1 Proce ss

 陶氏 以 丁二烯 为原料的 辛烯- -1 1 工艺

 Dow has developed a process to make octene-1 only based on the telomerization of butadiene with methanol in the presence of a palladium catalyst.

  The chemistry of the complete reaction sequence is shown below: 陶氏开发了一种只生产辛烯-1 的工艺,该工艺是基于在钯催化剂存在下用甲醇调聚丁二烯。完整反应顺序的化学原理如下所述:

  + Click image to enlarge Sasol Heptene- - 1 to Octene- - 1 Process

  l Sasol 庚 烯- -1 1 制辛烯- -1 1 工艺

 As previously described, Sasol has been very successful in the octene-1 comonomer business.

 However, the capacity of Trains I and II combined is 96 thousand metric tons per year and this is bumping up against the limit of the octene-1 contained in Sasol’s Secunda synfuels stream.

 One approach to overcome this limitation is to exploit the availability of unused heptene-1 in the Secunda synfuels stream.

 In order to transform heptene-1 to octene-1, five process steps are required: 如同前面所述,Sasol 在辛烯-1 共聚单体业务方面非常成功。然而,生产线 1和 2 合起来的能力是 9.6 万吨/年,这超越了 Sasol Secunda 合成燃料流包含的辛烯-1 的最高限额。克服这种限制的一种方法是利用 Secunda 合成燃料流中未用过的庚烯-1 的可获得性。为了转换庚烯-1 制辛烯-1,需要五种工艺步骤:

  Separation of crude heptene-1 粗庚烯-1 的分离  Hydroformylation of heptene-1 to n -octanal 庚烯-1 制羰基合成正辛醛  Hydrogenation of n -octanal to 1-octanol

 正辛醛加氢制 1-辛醇  Dehydration of 1-octanol to octene-1 1-辛醇脱水制辛烯-1  Final purification of octene-1 to comonomer grade 辛烯-1 最后纯化到共聚单体级 Sasol has announced that a new octene-1 plant using all of these process steps is under construction at Sasol’s Secunda complex.

 This plant will be the third and largest of three octene-1 trains at that location, but the first to employ a hydroformylation step.

 Davy Process Technology is supplying the hydroformylation technology.

 The latest train will produce 100 thousand metric tons of octene-1 and was scheduled to go into operation during the second half of 2007, but is now expected to start-up in 2008.

 Sasol 宣布利用所有这些工艺步骤的新辛烯-1 装置正在Sasol Secunda 联合工厂建造中。该装置将是那儿的第三套装置,是三条辛烯-1生产线中最大的,不过是首先利用羰基合成步骤的。Davy 工艺技术正在提供羰基合成技术。最新的生产线将生产 10 万吨辛烯-1,预定在 2007 年下半年投产,不过现在可望于 2008 年开车。

 s Economics 经济性分析

 Cost of production economics for the following LAO process technologies are included in this report: 本报告包括了下述 LAO 工艺技术的生产成本经济性分析:

 Commercial Full Range

 商业 化 全馏程 工艺

  Chevron Phillips Process Chevron Phillips 工艺  Ineos Process Ineos 工艺  Shell SHOP Process 壳牌 SHOP 工艺  Idemitsu 出光工艺 Commercial Single Fraction or On- - Purpose

 商业 化的 单馏分或专门化 工艺

  Chevron Phillips Hexene-1 via Ethylene Trimerization

  Chevron Phillips 乙烯三聚生产己烯-1  Sasol FT-Derived Hexene-1

  Sasol 费-托法己烯-1  Sasol FT-Derived Octene-1 Sasol 费-托法辛烯-1  Butene-1 via Extractive Distillation from Mixed C4’s 混合碳 4法通过萃取蒸馏生产丁烯-1  Axens Butene-1 via Alphabutol process

  Axens 通过 α 丁醇工艺生产丁烯-1 Emergi ng On- - Purpose Routes

 新生的专门化路线

  Lummus Hexene-1 via Butene-1 Metathesis (CPT)

 Lummus 丁烯-1 转位己烯-1(CPT)  Dow Octene-1 via Butadiene Telomerization 陶氏丁二烯调聚生产辛烯-1  Sasol Ocetene-1 via Heptene-1 Hydroformylation Sasol 己烯-1 羰基合成生产辛烯-1  Sasol Octene-1 via Ethylene Tetramerization

  Sasol 乙烯四聚生产辛烯-1 Commercial Analysis

 商业分析

 世界线形 α 烯烃需求为 400 万吨左右。从专门化生产和全馏程 LAO 装置生产的丁烯-1 占需求的 25%。需求集中在占统治地位的 LLDPE,占丁烯-1、辛烯-1、己烯-1 总需求的 35%左右。

 The global demand for linear alpha olefins is about four million tons.

  Butene-1, which is sourced from both on-purpose production and

 full range LAO plants, accounts for around 25 percent of demand.

 Demand is focused on LLDPE which dominates, accounting for about 35 percent of total demand consuming butene-1, octene-1 and hexene-1.

  Detergents are the second major end-use for LAOs, accounting for about 21 percent.

 This is followed by HDPE and synthetic lubricants (see Figure 6). 洗涤剂是 LAOs 第二大主要用途,占 21%左右。接下来是 HDPE 和合成润滑油(见图 6). North America accounts for circa 48 percent of global LAO demand.

 However, over the forecast period to 2020, Asia is anticipated to grow well above the global average.

 By 2020, the region could account for around seventeen percent of the global total.

  In contrast, overall demand growth in developed economies will be in line with, or even below average GDP across all LAO fractions. 北美占全球 LAO 需求的大约48%。然而,在到 2020 年的预测期间,亚洲可望远超世界平均。到 2020 年,该地区占全球总数的 17%左右。相反,发达国家的需求总增长将符合,或低于所有LAO 馏分的平均 GDP。

 Figure 6 图 图 6 6

 Linear Alpha Olefin Demand by End- - Use

 按最终用途划分的线形 α 烯烃需求 (2006 Estimate)

 (2006 年预测)

 + Click image to enlarge In general, developed economies are mature alpha olefins markets. In countries like China and India to a lesser extent, there is not only strong demand growth for petrochemicals in general, there is also an increased need for more sophisticated products and this impacts products across the whole LAO spectrum from plastics to detergents to lubricants, etc. 总的说来,发达经济体是成熟的 α 烯烃市场。在中国和印度之类的国家,成熟度

 略差,不仅有对石化产品很强的需求增长,还有愈益需要更加先进的产品,这影响到整个 LAO 范围的产品,从塑料到洗涤剂,到润滑油等。

 These reports are for the exclusive use of the purchasing company or its subsidiaries, from Nexant, Inc., 44 South Broadway, White Plains, New York

  10601-4425 U.S.A.

 For further information about these reports contact Dr. Jeffrey S. Plotkin, Vice President and Global Director, PERP Program, 这些报告供购买公司或其子公司排他性的使用。phone: 1-914-609-0315;

 fax: 1-914-609-0399;

 e-mail:

  ;

 or Heidi Junker Coleman, phone: 1-914-609-0381,

 e-mail address:

  有关报告详情,请联系:

 莱森特公司中国代表处:

  首席代表:

 蒋世新

 北京市朝阳区安定路 35 号

 安华发展大厦 1403 室

  电话:(010)5166 6778 转 808

  传真:(010)6445 2942

  手机:+ 86-1380-1000-335

  Email:

 or

 Email:

  We regularly send out an email when we place

 new item s on our News pages.

 Click here

 - -

 if you

 would like to be added to ChemSystems" mailing list.

 Click here to see the report

 ©2008 Nexant, Inc.

推荐访问:烯烃 评价 规划